6533b829fe1ef96bd128a296
RESEARCH PRODUCT
Tunnel effect and symmetries for Kramers–Fokker–Planck type operators
Frédéric HérauJohannes SjöstrandMichael Hitriksubject
Maxima and minimaComputer Science::Information RetrievalGeneral MathematicsExponentSemiclassical physicsFokker–Planck equationLimit (mathematics)Finite setEigenvalues and eigenvectorsMathematicsMorse theoryMathematical physicsdescription
AbstractWe study operators of Kramers–Fokker–Planck type in the semiclassical limit, assuming that the exponent of the associated Maxwellian is a Morse function with a finite number n0 of local minima. Under suitable additional assumptions, we show that the first n0 eigenvalues are real and exponentially small, and establish the complete semiclassical asymptotics for these eigenvalues.
year | journal | country | edition | language |
---|---|---|---|---|
2011-05-12 | Journal of the Institute of Mathematics of Jussieu |