6533b829fe1ef96bd128ab15

RESEARCH PRODUCT

Monte Carlo Simulations of Au38(SCH3)24 Nanocluster Using Distance-Based Machine Learning Methods

Hannu HäkkinenAntti PihlajamäkiJoakim LinjaJoonas HämäläinenTommi KärkkäinenPaavo NieminenSami Malola

subject

010304 chemical physicsbusiness.industryChemistryMonte Carlo methodThermal dynamics010402 general chemistryMachine learningcomputer.software_genre01 natural sciences0104 chemical sciencesInteraction potential0103 physical sciencesCluster (physics)Artificial intelligencePhysical and Theoretical ChemistrybusinesscomputerDistance based

description

We present an implementation of distance-based machine learning (ML) methods to create a realistic atomistic interaction potential to be used in Monte Carlo simulations of thermal dynamics of thiol...

https://doi.org/10.1021/acs.jpca.0c01512