6533b829fe1ef96bd128ab15
RESEARCH PRODUCT
Monte Carlo Simulations of Au38(SCH3)24 Nanocluster Using Distance-Based Machine Learning Methods
Hannu HäkkinenAntti PihlajamäkiJoakim LinjaJoonas HämäläinenTommi KärkkäinenPaavo NieminenSami Malolasubject
010304 chemical physicsbusiness.industryChemistryMonte Carlo methodThermal dynamics010402 general chemistryMachine learningcomputer.software_genre01 natural sciences0104 chemical sciencesInteraction potential0103 physical sciencesCluster (physics)Artificial intelligencePhysical and Theoretical ChemistrybusinesscomputerDistance baseddescription
We present an implementation of distance-based machine learning (ML) methods to create a realistic atomistic interaction potential to be used in Monte Carlo simulations of thermal dynamics of thiol...
year | journal | country | edition | language |
---|---|---|---|---|
2020-05-15 | The Journal of Physical Chemistry A |