6533b82afe1ef96bd128b6a7

RESEARCH PRODUCT

Observation ofe+e−→ηJ/ψat center-of-mass energys=4.009  GeV

A. ZalloK. LiJ. F. SunYang QinFang LiuShan WangY. ZengI. DenysenkoZhe SunYao WangXiao-tong LuG. S. VarnerY. B. ChenB. Y. ZhangXiaofeng ZhuJ. Z. ZhangHang LiuXiang LiuI. TapanP. L. WangI. B. NikolaevX. L. LuoA. CalcaterraS. L. LiY. H. YanC. S. JiJ. W. ZhaoD. Cronin-hennessyH. LiangG. R. LiaoF. F. JingY. M. ZhuQ. OuyangS. S. FangY. B. LiuT. HeldH. L. MaD. M. LiF. FeldbauerChang LiuXiangdong RuanK. H. RashidS. J. ChenO. BondarenkoYingchun ZhuA. Q. GuoW. B. YanZ. G. ZhaoM. ShaoY. T. GuH. MuramatsuKe WangQ. L. XiuM. PelizaeusX. L. JiW. M. SongL. G. XiaH. H. ZhangS. PacettiZ. J. SunH. LoehnerS. P. YuG. A. ChelkovG. A. ChelkovTalib HussainD. J. AmbroseY. NefedovV. V. BytevFenfen AnY. T. LiangZujian WangY. H. GuanQ. J. LiH. M. HuQ. P. JiN. WuKrisztian PetersH. B. LiA. G. DenigC. L. LuoT. C. ZhaoE. PrencipeM. MaggioraLing ZhaoZ. B. LiY. F. WangG. LiJ. W. ZhangFeng LiuW. D. LiJ. Q. ZhangC. C. ZhangM. Y. DongZ. NingB. ZhongL. B. GuoX. T. LiaoS. H. ZhangX. Y. ShenY. Q. WangM. KavatsyukLei LiLei ZhaoZ. Y. HeZ. L. HouYang YangZ. H. QinQian LiuFeng XueCui LiUlrich WiednerY. DingM. G. ZhaoX. T. HuangM. AblikimY. G. XieA. A. ZafarQ. J. XuZ. H. AnG. RongB. Q. WangA. SarantsevA. SarantsevS. X. DuChuan LiuQun-yao WangB. J. LiuJ. H. ZouG. M. XuT. MaYanping HuangC. D. FuC. Q. FengD. H. WeiC. P. ShenC. P. ShenQ. M. MaB. X. ZhangH. J. LuJ. G. LuR. B. FerroliW. G. LiH. H. LiuB. SpruckC. Z. YuanS. S. SunX. N. LiG. R. LuJ. C. LiJ. S. LangeZ. Y. DengY. YuanY. S. ZhuZ. A. LiuHaiping PengX. H. ZhaoJ. ZhuangTao LuoX. TangJ. V. BennettM. X. LuoZ. A. ZhuX. Y. MaW. X. GongD. V. DedovichB. X. YuY. BanJürgen BeckerL. H. WuP. WeidenkaffM. H. YeS. SpataroX. P. XuF. E. MaasT. HuD. H. SunXingguo LiC. ZhuJ. M. BianR. E. MitchellH. S. ChenKai LiuZhenli XuY. J. MaoShujun ZhaoY.n. GaoZhenyu ZhangS. P. WenW. LaiH. L. DaiIgor BoykoX. S. QinX. R. ZhouShou-hua ZhuH. M. LiuX. L. WangJ. Z. BaiJ. L. FuJ. F. HuCheng LiB. WangMichael WernerGuangming HuangG. F. CaoH. X. YangH.s. XuY. P. ChuG. X. SunX. B. JiLi YanZ. JiaoFu-hu LiuC. H. LiM. H. GuD. H. ZhangL. Y. DongZ. WuY. B. ZhaoX. K. ZhouHuihui LiuJ. P. LiuH. Y. ShengJ. C. ChenC. X. YuC. J. TangB. S. ZouY. P. LuJ. G. MesschendorpJie YuNasser Kalantar-nayestanakiB. ZhengR. G. PingS. QianJialun PingT. J. MinK. J. ZhuB. D. SchaeferY. ZhangQ. AnM. GrecoZhiqiang LiuMiao HeC. Morales MoralesWei WuA. ZhemchugovA. ZhemchugovM. L. ChenL. L. WangM. N. AchasovL. P. ZhouX. Y. ZhangY. X. YangW. M. DingY. M. MaZ. P. MaoS. X. WuM. R. ShepherdZ. G. WangK. Y. LiuH. Y. ZhangQ. ZhaoY. Z. SunH. P. ChengK. X. ZhaoJ. FangZhiqing LiuG. F. ChenGang ZhaoS. L. OlsenRoy A. BriereC. NicholsonJ. Y. ZhangX. S. JiangJ. F. ChangM. UllrichK. J. ZhuO. CakirX. CaiX. H. MoL. S. WangY. K. HengXuantong ZhangY. J. SunE. BogerE. BogerY. L. HanY. F. LiangHongsheng ZhaoQ. J. WangR. PolingJianping ZhengD. P. JinY. S. ZhangM. LvZ. XueL. L. JiangP. L. LiuM. DestefanisQ. A. MalikF. A. HarrisJ. B. JiaoJ. ZhongZhiyong ZhangX. LiuZ. J. XiaoY. P. GuoSerkant Ali CetinE. H. ThorndikeX. H. LiuJ. P. DaiC. L. MaC. GengF. LiF. C. MaG. F. XuS. JinX. Y. SongY. H. ZhengXiaobo ZhuS. MaX. R. LiCong-feng QiaoD. TothJ. F. QiuMeng WangN. Yu. MuchnoiHeng-yun YeL. FavaY. H. ZhangJ. S. HuangQ. G. WenC. X. LiuZ. Y. WangC. MotzkoK. GoetzenW. KuehnJulian SchulzeJoong-won ParkP. L. WangM. QiQi-wen LüS. B. LiuM. BertaniM. H. YeW. GradlJ. MinH. B. LiuK. L. He

subject

Nuclear physicsPhysicsNuclear and High Energy PhysicsPositronAnnihilationlawElectron–positron annihilationHadronHigh Energy Physics::ExperimentCenter of massColliderEnergy (signal processing)law.invention

description

Using a 478 pb(-1) data sample collected with the BESIII detector operating at the Beijing Electron Positron Collider storage ring at a center-of-mass energy of root s = 4.009 GeV, the production of e(+)e(-) -> eta J/psi is observed for the first time with a statistical significance of greater than 10 sigma. The Born cross section is measured to be (32.1 +/- 2.8 +/- 1.3) pb, where the first error is statistical and the second systematic. Assuming the eta J/psi signal is from a hadronic transition of the psi(4040), the fractional transition rate is determined to be B(psi(4040) -> eta J/psi) = (5.2 +/- 0.5 +/- 0.2 +/- 0.5) x 10(-3), where the first, second, and third errors are statistical, systematic, and the uncertainty from the psi(4040) resonant parameters, respectively. The production of e(+)e(-) -> pi(0)J/psi is searched for, but no significant signal is observed, and B(psi(4040) -> pi(0)J/psi) < 2.8 x 10(-4) is obtained at the 90% confidence level.

https://doi.org/10.1103/physrevd.86.071101