6533b82afe1ef96bd128b88e
RESEARCH PRODUCT
Odorant-binding protein-based optoelectronic tongue and nose for sensing volatile organic compounds
Christine BelloirEmilie BarouCharlotte HurotYanxia HouLoïc BriandArnaud Buhotsubject
electronic nosevolatile organic compoundMaterials scienceElectronic tongueodorant-binding proteins02 engineering and technologyelectronic tongue01 natural sciences[CHIM.ANAL]Chemical Sciences/Analytical chemistrySurface plasmon resonance imaging[CHIM]Chemical SciencesVolatile organic compoundComputingMilieux_MISCELLANEOUSchemistry.chemical_classificationDetection limitElectronic nosebiologybusiness.industry[CHIM.ORGA]Chemical Sciences/Organic chemistry010401 analytical chemistryBinding properties[CHIM.ORGA] Chemical Sciences/Organic chemistry021001 nanoscience & nanotechnology0104 chemical sciences[SDV.AEN] Life Sciences [q-bio]/Food and NutritionchemistryLinear rangeOdorant-binding proteinbiology.proteinOptoelectronicssurface plasmon resonance imaging0210 nano-technologybusiness[SDV.AEN]Life Sciences [q-bio]/Food and Nutritiondescription
International audience; We developed an array of odorant-binding protein mutants with various binding properties. The same design is suitable for the detection and identification of volatile organic compounds (VOCs) both in the liquid phase and in the gas phase by surface plasmon resonance imaging. The obtained optoelectronic tongue is highly selective at low concentrations of VOCs with a low detection limit, but a narrow linear range. In comparison, the optoelectronic nose gives a much higher signal to noise ratio, but the discrimination of VOCs from different chemical classes requires kinetic data to get rid of non-specific signals. This work shows that these optoelectronic tongue and nose are promising for numerous applications, each system having its own advantages.
year | journal | country | edition | language |
---|---|---|---|---|
2019-05-26 |