6533b82afe1ef96bd128c197

RESEARCH PRODUCT

Refrigeration of an array of cylindrical nanosystems by superfluid helium counterflow

Luca GalantucciAntonio SellittoMichele SciaccaDavid JouDavid Jou

subject

Thermal conductivity Liquid helium Quantum turbulence Micropores Quantized vortices Computer refrigerationQuantum turbulenceCooling capacity01 natural sciences010305 fluids & plasmaslaw.inventionPhysics::Fluid DynamicsThermal conductivitylaw0103 physical sciencesthermal conductivity010306 general physicsSettore MAT/07 - Fisica Matematicathermal conductivity; liquid helium; quantum turbulence; micropores; quantized vortices; computer refrigerationquantized vorticesCondensed Matter::Quantum GasesFluid Flow and Transfer ProcessesPhysicsCondensed matter physicsliquid heliumTurbulenceLiquid heliumMechanical Engineeringcomputer refrigerationRefrigerationquantum turbulenceLaminar flowMechanicsCondensed Matter PhysicsmicroporesSuperfluid helium-4

description

Abstract Motivated by the challenge of computer refrigeration, we study the limits set by the transition to quantum turbulence on the cooling of an array of heat-producing cylindrical nanosystems by means of superfluid-helium counterflow. The effective thermal conductivity in laminar counterflow superfluid helium is obtained in channels with rectangular cross section, through arrays of mutually parallel cylinders and in the combined situation of arrays of orthogonal cylinders inside the rectangular channel. The maximum cooling capacity is analyzed on the condition that turbulence is avoided and that the highest temperature does not exceed the lambda temperature.

10.1016/j.ijheatmasstransfer.2016.08.019http://hdl.handle.net/11386/4673243