6533b82afe1ef96bd128c3d6
RESEARCH PRODUCT
Non-perturbative renormalization of the quark condensate in Ginsparg-Wilson regularizations
Laurent LellouchPilar HernándezHartmut WittigKarl Jansensubject
QuarkPhysicsNuclear and High Energy PhysicsHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyFOS: Physical sciencesFísicaParticle Physics - LatticeQuenched approximationFermionRenormalization groupPseudoscalar mesonRenormalizationPseudoscalarHigh Energy Physics - LatticeRegularization (physics)Mathematical physicsdescription
We present a method to compute non-perturbatively the renormalization constant of the scalar density for Ginsparg-Wilson fermions. It relies on chiral symmetry and is based on a matching of renormalization group invariant masses at fixed pseudoscalar meson mass, making use of results previously obtained by the ALPHA Collaboration for O(a)-improved Wilson fermions. Our approach is quite general and enables the renormalization of scalar and pseudoscalar densities in lattice regularizations that preserve chiral symmetry and of fermion masses in any regularization. As an application we compute the non-perturbative factor which relates the renormalization group invariant quark condensate to its bare counterpart, obtained with overlap fermions at beta=5.85 in the quenched approximation.
year | journal | country | edition | language |
---|---|---|---|---|
2001-06-17 | Journal of High Energy Physics |