6533b82bfe1ef96bd128ced0
RESEARCH PRODUCT
2021-$H_0$ Odyssey: Closed, Phantom and Interacting Dark Energy Cosmologies
Supriya PanEleonora Di ValentinoWeiqiang YangOlga MenaAlessandro Melchiorrisubject
PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsFOS: Physical sciencesAstronomy and AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesImaging phantomGeneral Relativity and Quantum CosmologyQuantum electrodynamics0103 physical sciencesDark energyCosmological perturbation theoryBaryon acoustic oscillations010303 astronomy & astrophysicsAstrophysics - Cosmology and Nongalactic Astrophysicsdescription
Up-to-date cosmological data analyses have shown that \textit{(a)} a closed universe is preferred by the Planck data at more than $99\%$ CL, and \textit{(b)} interacting scenarios offer a very compelling solution to the Hubble constant tension. In light of these two recent appealing scenarios, we consider here an interacting dark matter-dark energy model with a non-zero spatial curvature component and a freely varying dark energy equation of state in both the quintessential and phantom regimes. When considering Cosmic Microwave Background data only, a phantom and closed universe can perfectly alleviate the Hubble tension, without the necessity of a coupling among the dark sectors. Accounting for other possible cosmological observations compromises the viability of this very attractive scenario as a global solution to current cosmological tensions, either by spoiling its effectiveness concerning the $H_0$ problem, as in the case of Supernovae Ia data, or by introducing a strong disagreement in the preferred value of the spatial curvature, as in the case of Baryon Acoustic Oscillations.
year | journal | country | edition | language |
---|---|---|---|---|
2021-01-08 |