6533b82bfe1ef96bd128d638

RESEARCH PRODUCT

Reheating the Standard Model from a hidden sector

Ville VaskonenTommi Tenkanen

subject

Particle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Ultimate fate of the universereheatingmedia_common.quotation_subjectDark matterUNIVERSEFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics114 Physical sciences01 natural sciencesdark matterdecouplingpimeä aineHigh Energy Physics - Phenomenology (hep-ph)INFLATIONBig Bang nucleosynthesis0103 physical sciencesDARK-MATTERELECTROWEAK VACUUM010306 general physicsmedia_commonPhysicsQuintom scenariota114STABILITY010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyDecoupling (cosmology)InflatonHIGGSUniverseHidden sectorextensions of the Standard ModelHigh Energy Physics - Phenomenologyhidden sectorsSCALARAstrophysics - Cosmology and Nongalactic Astrophysics

description

We consider a scenario where the inflaton decays to a hidden sector thermally decoupled from the visible Standard Model sector. A tiny portal coupling between the hidden and the visible sectors later heats the visible sector so that the Standard Model degrees of freedom come to dominate the energy density of the Universe before Big Bang Nucleosynthesis. We find that this scenario is viable, although obtaining the correct dark matter abundance and retaining successful Big Bang Nucleosynthesis is not obvious. We also show that the isocurvature perturbations constituted by a primordial Higgs condensate are not problematic for the viability of the scenario.

http://urn.fi/URN:NBN:fi:jyu-201611024550