6533b82bfe1ef96bd128d87f
RESEARCH PRODUCT
Local uniqueness of the solutions for a singularly perturbed nonlinear nonautonomous transmission problem
Matteo Dalla RivaPaolo MusolinoRiccardo Molinarolosubject
Local uniqueness of the solutionsLaplace's equation020502 materialsApplied MathematicsNonlinear nonautonomous transmission problem010102 general mathematicsMathematical analysisA domainBoundary (topology)02 engineering and technology01 natural sciencesNonlinear systemMathematics - Analysis of PDEs35J25 31B10 35J65 35B25 35A020205 materials engineeringTransmission (telecommunications)Settore MAT/05 - Analisi MatematicaLocal uniqueness of the solutions; Nonlinear nonautonomous transmission problem; Singularly perturbed perforated domainFOS: MathematicsUniqueness0101 mathematicsSingularly perturbed perforated domainAnalysisMathematicsAnalysis of PDEs (math.AP)description
Abstract We consider the Laplace equation in a domain of R n , n ≥ 3 , with a small inclusion of size ϵ . On the boundary of the inclusion we define a nonlinear nonautonomous transmission condition. For ϵ small enough one can prove that the problem has solutions. In this paper, we study the local uniqueness of such solutions.
year | journal | country | edition | language |
---|---|---|---|---|
2020-02-01 |