6533b82bfe1ef96bd128d941
RESEARCH PRODUCT
Soundness of Dark Energy properties
Stefano GariazzoEleonora Di ValentinoSunny VagnozziOlga Menasubject
PhysicsCOSMIC cancer databaseCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsEquation of state (cosmology)Cosmic microwave backgroundDark matterFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesRedshiftGeneral Relativity and Quantum CosmologyBaryonsymbols.namesake0103 physical sciencesDark energysymbolsHubble's lawAstrophysics - Cosmology and Nongalactic Astrophysicsdescription
Type Ia Supernovae (SNeIa) used as standardizable candles have been instrumental in the discovery of cosmic acceleration, usually attributed to some form of dark energy (DE). Recent studies have raised the issue of whether intrinsic SNeIa luminosities might evolve with redshift. While the evidence for cosmic acceleration is robust to this possible systematic, the question remains of how much the latter can affect the inferred properties of the DE component responsible for cosmic acceleration. This is the question we address in this work. We use SNeIa distance moduli measurements from the Pantheon and JLA samples. We consider models where the DE equation of state is a free parameter, either constant or time-varying, as well as models where DE and dark matter interact, and finally a model-agnostic parametrization of effects due to modified gravity (MG). When SNeIa data are combined with Cosmic Microwave Background (CMB) temperature and polarization anisotropy measurements, we find strong degeneracies between parameters governing the SNeIa systematics, the DE parameters, and the Hubble constant $H_0$. These degeneracies significantly broaden the DE parameter uncertainties, in some cases leading to ${\cal O}(\sigma)$ shifts in the central values. However, including low-redshift Baryon Acoustic Oscillation and Cosmic Chronometer measurements, as well as CMB lensing measurements, considerably improves the previous constraints, and the only remaining effect of the examined systematic is a $\lesssim 40\%$ broadening of the uncertainties on the DE parameters. The constraints we derive on the MG parameters are instead basically unaffected by the systematic in question. We therefore confirm the overall soundness of dark energy properties.
year | journal | country | edition | language |
---|---|---|---|---|
2020-05-05 |