6533b82bfe1ef96bd128e092

RESEARCH PRODUCT

Marine biominerals: perspectives and challenges for polymetallic nodules and crusts.

Xiaohong WangWerner E.g. Müller

subject

Mineralization (geology)Geologic SedimentsManganeseMineralsMineralHot TemperatureBacteriaOceans and SeasMetallurgychemistry.chemical_elementEukaryotaBioengineeringManganeseHybrid carCobaltGeologic SedimentsDeep seachemistryEnvironmental chemistryBiofilmsWater MicrobiologyBiomineralizationHydrothermal ventBiotechnology

description

Deep sea minerals in polymetallic nodules, crusts and hydrothermal vents are not only formed by mineralization but also by biologically driven processes involving microorganisms (biomineralization). Within the nodules, free-living and biofilm-forming bacteria provide the matrix for manganese deposition, and in cobalt-rich crusts, coccolithophores represent the dominant organisms that act as bio-seeds for an initial manganese deposition. These (bio)minerals are economically important: manganese is an important alloying component and cobalt forms part of special steels in addition to being used, along with other rare metals, in plasma screens, hard-disk magnets and hybrid car motors. Recent progress in our understanding of the participation of the organic matrices in the enrichment of these metals might provide the basis for feasibility studies of biotechnological applications.

10.1016/j.tibtech.2009.03.004https://pubmed.ncbi.nlm.nih.gov/19409632