6533b82bfe1ef96bd128e1d5

RESEARCH PRODUCT

Impact of sewage sludges on Medicago truncatula symbiotic proteome

Silvio GianinazziEliane Dumas-gaudotGwénaëlle Bestel-corre

subject

0106 biological sciencesProteomeSewagePlant ScienceHorticulture01 natural sciencesBiochemistryPeptide Mapping12. Responsible consumption03 medical and health sciencesSymbiosisMycorrhizaeBotanyMedicagoElectrophoresis Gel Two-DimensionalMycorrhizaSymbiosisMolecular BiologyGlomusComputingMilieux_MISCELLANEOUS[SDV.BV.PEP] Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacy030304 developmental biologyPlant Proteins0303 health sciencesSinorhizobium melilotibiologySewagebusiness.industryfungifood and beveragesGeneral MedicineHydrogen-Ion Concentrationbiology.organism_classification6. Clean waterMedicago truncatula[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacySpectrometry Mass Matrix-Assisted Laser Desorption-IonizationProteomebusinessSludge010606 plant biology & botanySinorhizobium meliloti

description

The effects of sewage sludges were investigated on the symbiotic interactions between the model plant Medicago truncatula and the arbuscular mycorrhizal fungus Glomus mosseae or the rhizobial bacteria Sinorhizobium meliloti. By comparison to a control sludge showing positive effects on plant growth and root symbioses, sludges enriched with polycylic aromatic hydrocarbons or heavy metals were deleterious. Symbiosis-related proteins were detected and identified by two-dimensional electrophoresis and matrix-assisted laser desorption ionization mass spectrometry, and image analysis was used to study the effects of sewage sludges on M. truncatula symbiotic proteome.

https://hal.inrae.fr/hal-02672205