6533b82bfe1ef96bd128e343
RESEARCH PRODUCT
Highly transitive actions of free products
Soyoung MoonYves Staldersubject
Transitive actionHighly transitive actionsMSC: Primary: 20B22 20E06Group Theory (math.GR)01 natural sciencesBaire category Theorem[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]CombinatoricsFree products0103 physical sciencesFOS: MathematicsCountable set0101 mathematics20B22MathematicsTransitive relation20E06Group (mathematics)Mathematics::Operator Algebras010102 general mathematics20E06 20B2216. Peace & justiceFree productBaire category theorem010307 mathematical physicsGeometry and TopologyMathematics - Group Theorydescription
We characterize free products admitting a faithful and highly transitive action. In particular, we show that the group $\PSL_2(\Z)\simeq (\Z/2\Z)*(\Z/3\Z)$ admits a faithful and highly transitive action on a countable set.
| year | journal | country | edition | language |
|---|---|---|---|---|
| 2013-03-23 |