6533b82cfe1ef96bd12900bd
RESEARCH PRODUCT
Synthesis, Characterization and Preliminary Biological Evaluation of P(HPMA)-b-P(LLA) Copolymers: A New Type of Functional Biocompatible Block Copolymer
Matthias BarzHolger FreyMaría J. VicentRudolf ZentelFabiana CanalKaloian KoynovFlorian K. Wolfsubject
chemistry.chemical_classificationMaterials scienceRAFT polymerizationPolymers and PlasticssynthesisStereochemistryOrganic ChemistryFluorescence correlation spectroscopyfluorescence correlation spectroscopyPolymerchainMethacrylatebiocompatible block copolymerspolylactide block copolymersTransfer agentchemistryPolymerizationPolymer chemistryAmphiphileHPMA block copolymersMaterials ChemistryCopolymerReversible addition−fragmentation chain-transfer polymerizationdescription
We describe a synthetic pathway to functional P(HPMA)-b-P(LLA) block copolymers. The synthesis relies on a combination of ring-opening polymerization of L-lactide, conversion into a chain transfer agent (CTA) for the RAFT polymerization of pentafluorophenyl methacrylate. A series of block copolymers was prepared that exhibited molecular weights $\overline M _{\rm n}$ ranging from 7 600 to 34 300 g · mol(-1) , with moderate PDI between 1.3 and 1.45. These reactive precursor polymers have been transformed into biocompatible P(HPMA)-b-P(LLA) copolymers and their fluorescently labeled derivatives by facile replacement of the pentafluorophenyl groups. The fluorescence label attached to this new type of a partially degradable amphiphilic block copolymer was used to study cellular uptake in human cervix adenocarcinoma (HeLa) cells as well as aggregation behavior by fluorescence correlation spectroscopy (FCS).
year | journal | country | edition | language |
---|---|---|---|---|
2010-01-01 |