6533b82dfe1ef96bd1290b6e

RESEARCH PRODUCT

What should I do next? Using shared representations to solve interaction problems

Giovanni PezzuloHaris Dindo

subject

Computer sciencejoint actionModels PsychologicalBayesian inference050105 experimental psychology03 medical and health sciencesUser-Computer Interface0302 clinical medicineCognitionJoint action Graphical models Human-Robot Interaction Shared representationsHumans0501 psychology and cognitive sciencesInterpersonal RelationsCooperative BehaviorProblem SolvingConstellationCognitive scienceSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniFocus (computing)Communicationbusiness.industryGeneral Neuroscience05 social sciencesStatistical modelCognitionpredictionTower (mathematics)Joint actionAction (philosophy)businesssignaling030217 neurology & neurosurgery

description

Studies on how “the social mind” works reveal that cognitive agents engaged in joint actions actively estimate and influence another’s cognitive variables and form shared representations with them. (How) do shared representations enhance coordination? In this paper, we provide a probabilistic model of joint action that emphasizes how shared representations help solving interaction problems. We focus on two aspects of the model. First, we discuss how shared representations permit to coordinate at the level of cognitive variables (beliefs, intentions, and actions) and determine a coherent unfolding of action execution and predictive processes in the brains of two agents. Second, we discuss the importance of signaling actions as part of a strategy for sharing representations and the active guidance of another’s actions toward the achievement of a joint goal. Furthermore, we present data from a human-computer experiment (the Tower Game) in which two agents (human and computer) have to build together a tower made of colored blocks, but only the human knows the constellation of the tower to be built (e.g., red-blue-red-blue- $$\ldots$$ ). We report evidence that humans use signaling strategies that take another’s uncertainty into consideration, and that in turn our model is able to use humans’ actions as cues to “align” its representations and to select complementary actions.

10.1007/s00221-011-2712-1http://hdl.handle.net/10447/61777