6533b82dfe1ef96bd129139f

RESEARCH PRODUCT

Functions of histone modifications and histone modifiers in Schwann cells.

Mert DumanNikos TapinosMargot Martinez-morenoClaire Jacob

subject

0301 basic medicine570 Life sciencesLesionHistones03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineNeurotrophic factorsPeripheral Nerve InjuriesmedicineAnimalsHumansSecretionTranscription factorMyelin SheathbiologyRegeneration (biology)AxonsCell biologyNerve Regeneration030104 developmental biologyHistonemedicine.anatomical_structurenervous systemNeurologyMyelin sheathPeripheral nervous systembiology.proteinSchwann Cellsmedicine.symptom030217 neurology & neurosurgery570 Biowissenschaften

description

Schwann cells (SCs) are the main glial cells present in the peripheral nervous system (PNS). Their primary functions are to insulate peripheral axons to protect them from the environment and to enable fast conduction of electric signals along big caliber axons by enwrapping them in a thick myelin sheath rich in lipids. In addition, SCs have the peculiar ability to foster axonal regrowth after a lesion by demyelinating and converting into repair cells that secrete neurotrophic factors and guide axons back to their former target to finally remyelinate regenerated axons. The different steps of SC development and their role in the maintenance of PNS integrity and regeneration after lesion are controlled by various factors among which transcription factors and chromatin-remodeling enzymes hold major functions. In this review, we discussed how histone modifications and histone-modifying enzymes control SC development, maintenance of PNS integrity and response to injury. The functions of histone modifiers as part of chromatin-remodeling complexes are discussed in another review published in the same issue of Glia.

10.1002/glia.23795https://pubmed.ncbi.nlm.nih.gov/32034929