6533b82dfe1ef96bd12914d3

RESEARCH PRODUCT

Landauer’s Principle in Multipartite Open Quantum System Dynamics

Salvatore LorenzoSalvatore LorenzoMauro PaternostroFrancesco CiccarelloG. M. PalmaR. Mccloskey

subject

PhysicsQuantum PhysicsQuantum decoherenceCondensed Matter - Mesoscale and Nanoscale PhysicsStatistical Mechanics (cond-mat.stat-mech)Open Quantum System DynamicsFOS: Physical sciencesGeneral Physics and AstronomyLandauer's principle01 natural sciences010305 fluids & plasmasPhysics and Astronomy (all)Open quantum systemMultipartiteLandauer's Principle in MultipartiteClassical mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesQuantum systemQuantum informationQuantum Physics (quant-ph)010306 general physicsQuantum statistical mechanicsCondensed Matter - Statistical Mechanics

description

We investigate the link between information and thermodynamics embodied by Landauer's principle in the open dynamics of a multipartite quantum system. Such irreversible dynamics is described in terms of a collisional model with a finite temperature reservoir. We demonstrate that Landauer's principle holds, for such a configuration, in a form that involves the flow of heat dissipated into the environment and the rate of change of the entropy of the system. Quite remarkably, such a principle for {\it heat and entropy power} can be explicitly linked to the rate of creation of correlations among the elements of the multipartite system and, in turn, the non-Markovian nature of their reduced evolution. Such features are illustrated in two exemplary cases.

https://doi.org/10.1103/physrevlett.115.120403