6533b82dfe1ef96bd12914f1

RESEARCH PRODUCT

19F NMR as a versatile tool to study membrane protein structure and dynamics.

Ute A. HellmichUte A. HellmichDania Rose-sperlingBenedikt GoretzkiBenedikt GoretzkiMai Anh TranMai Anh TranLuca M Lauth

subject

0301 basic medicineMagnetic Resonance SpectroscopyChemistryCryo-electron microscopyProtein ConformationProtein dynamicsClinical BiochemistryMembrane ProteinsFluorine-19 NMRFluorine010402 general chemistryLigands01 natural sciencesBiochemistry0104 chemical sciences03 medical and health sciences030104 developmental biologyMembraneProtein structureMembrane proteinBiophysicsMolecular BiologyIon channelG protein-coupled receptorProtein Binding

description

Abstract To elucidate the structures and dynamics of membrane proteins, highly advanced biophysical methods have been developed that often require significant resources, both for sample preparation and experimental analyses. For very complex systems, such as membrane transporters, ion channels or G-protein coupled receptors (GPCRs), the incorporation of a single reporter at a select site can significantly simplify the observables and the measurement/analysis requirements. Here we present examples using 19F nuclear magnetic resonance (NMR) spectroscopy as a powerful, yet relatively straightforward tool to study (membrane) protein structure, dynamics and ligand interactions. We summarize methods to incorporate 19F labels into proteins and discuss the type of information that can be readily obtained for membrane proteins already from relatively simple NMR spectra with a focus on GPCRs as the membrane protein family most extensively studied by this technique. In the future, these approaches may be of particular interest also for many proteins that undergo complex functional dynamics and/or contain unstructured regions and thus are not amenable to X-ray crystallography or cryo electron microscopy (cryoEM) studies.

10.1515/hsz-2018-0473https://pubmed.ncbi.nlm.nih.gov/31004560