6533b82dfe1ef96bd1291db8
RESEARCH PRODUCT
Doubly heavy baryon spectra guided by lattice QCD
Humberto GarcilazoJavier VijandeA. Valcarcesubject
Quantum chromodynamicsPhysicsParticle physicsNuclear Theory010308 nuclear & particles physicsHigh Energy Physics::LatticeLattice field theoryHigh Energy Physics::PhenomenologyFOS: Physical sciencesLattice QCD01 natural sciencesNuclear Theory (nucl-th)BaryonHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Lattice (order)Excited state0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsGround stateLattice model (physics)description
This paper provides results for the ground state and excited spectra of three-flavored doubly heavy baryons, $bcn$ and $bcs$. We take advantage of the spin-independent interaction recently obtained to reconcile the lattice SU(3) QCD static potential and the results of nonperturbative lattice QCD for the triply heavy baryon spectra. We show that the spin-dependent potential might be constrained on the basis of nonperturbative lattice QCD results for the spin splittings of three-flavored doubly heavy baryons. Our results may also represent a challenge for future lattice QCD work, because a smaller lattice error could help in distinguishing between different prescriptions for the spin-dependent part of the interaction. Thus, by comparing with the reported baryon spectra obtained with parameters estimated from lattice QCD, one can challenge the precision of lattice calculations. The present work supports a coherent description of singly, doubly and triply heavy baryons with the same Cornell-like interacting potential. The possible experimental measurement of these states at LHCb is an incentive for this study.
year | journal | country | edition | language |
---|---|---|---|---|
2016-09-22 |