6533b82dfe1ef96bd1291ea9

RESEARCH PRODUCT

RootsGLOH2: embedding RootSIFT 'square rooting' in sGLOH2

Carlo ColomboFabio Bellavia

subject

FEATURE EXTRACTIONLOCAL FEATUREComputer scienceFeature extractionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-invariant feature transformFEATURE MATCHING02 engineering and technologyRobustness (computer science)Euclidean geometryComputer Science::Multimedia0202 electrical engineering electronic engineering information engineeringBeneficial effectsSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniSettore INF/01 - Informaticabusiness.industryImage matching020206 networking & telecommunicationsPattern recognitionCOMPUTER VISIONImage Matching Local Image Descriptors RootSIFT sGLOH2Computer Science::Computer Vision and Pattern RecognitionEmbedding020201 artificial intelligence & image processingComputer Vision and Pattern RecognitionArtificial intelligencebusinessSoftwareSquare rootingIMAGE MATCHING

description

This study introduces an extension of the shifting gradient local orientation histogram doubled (sGLOH2) local image descriptor inspired by RootSIFT ‘square rooting’ as a way to indirectly alter the matching distance used to compare the descriptor vectors. The extended descriptor, named RootsGLOH2, achieved the best results in terms of matching accuracy and robustness among the latest state-of-the-art non-deep descriptors in recent evaluation contests dealing with both planar and non-planar scenes. RootsGLOH2 also achieves a matching accuracy very close to that obtained by the best deep descriptors to date. Beside confirming that ‘square rooting’ has beneficial effects on sGLOH2 as it happens on scale invariant feature transform, experimental evidence shows that classical norm-based distances, such as the Euclidean and Manhattan distances, only provide suboptimal solutions to the problem of local image descriptor matching. This suggests matching distance design as a topic to investigate further in the near future.

10.1049/iet-cvi.2019.0716http://hdl.handle.net/10447/403134