6533b82dfe1ef96bd1291eaf
RESEARCH PRODUCT
Efficient Approach for Simulating Distorted Materials
Pekka KoskinenOleg O. Kitsubject
Condensed Matter - Materials ScienceComputer scienceScience and engineeringMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyMechanical engineeringNanotechnology02 engineering and technologyElectronic structure021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter - Other Condensed MatterFormalism (philosophy of mathematics)0103 physical sciences010306 general physics0210 nano-technologyMaterial propertiesGraphene nanoribbonsOther Condensed Matter (cond-mat.other)description
The operation principles of nanoscale devices are based upon both electronic and mechanical properties of materials. Because these properties can be coupled, they need to be investigated simultaneously. At this moment, however, the electronic structure calculations with custom-made long-range mechanical distortions are impossible, or expensive at best. Here we present a unified formalism to solve exactly the electronic structures of nanomaterials with versatile distortions. We illustrate the formalism by investigating twisted armchair graphene nanoribbons with the least possible number of atoms. Apart from enabling versatile material distortions, the formalism is capable of reducing computational costs orders of magnitude in various areas of science and engineering.
year | journal | country | edition | language |
---|---|---|---|---|
2010-01-29 | Physical Review Letters |