6533b82dfe1ef96bd1291f01
RESEARCH PRODUCT
An exact thermodynamical model of power-law temperature time scaling
Massimiliano Zingalessubject
PhysicsAnomalous conductionDiffusion equationField (physics)business.industryPower-lawTime evolutionTemperature evolutionGeneral Physics and AstronomyAnomalous conduction; Fractional derivative; Fractional Transport; Power-law; Temperature evolution;Function (mathematics)Fractional derivative01 natural sciencesPower law010305 fluids & plasmasFractional Transport010101 applied mathematics0103 physical sciencesStatistical physics0101 mathematicsDiffusion (business)businessSettore ICAR/08 - Scienza Delle CostruzioniScalingThermal energydescription
In this paper a physical model for the anomalous temperature time evolution (decay) observed in complex thermodynamical system in presence of uniform heat source is provided. Measures involving temperatures T with power-law variation in time as T(t)∝tβ with β∈R shows a different evolution of the temperature time rate T(t) with respect to the temperature time-dependence T(t). Indeed the temperature evolution is a power-law increasing function whereas the temperature time rate is a power-law decreasing function of time. Such a behavior may be captured by a physical model that allows for a fast thermal energy diffusion close to the insulated location but must offer more resistance to the thermal energy flux as soon as the distance increases. In this paper this idea has been exploited showing that such thermodynamical system is represented by an heterogeneous one-dimensional distributed mass one with power-law spatial scaling of its physical properties. The model yields, exactly a power-law evolution (decay) of the temperature field in terms of a real exponent as T∝tβ (or T∝t−β) that is related to the power-law spatial scaling of the thermodynamical property of the system. The obtained relation yields a physical ground to the formulation of fractional-order generalization of the Fourier diffusion equation.
year | journal | country | edition | language |
---|---|---|---|---|
2016-02-01 |