6533b82efe1ef96bd1292a43

RESEARCH PRODUCT

Brain circuit-gene expression relationships and neuroplasticity of multisensory cortices in blind children.

Jorge SepulcreGeorges El FakhriJose Ignacio AragónAlvaro Pascual-leoneVíctor CostumeroIbai DiezTomás OrtizLaura Ortiz-teránDavid L. Perez

subject

0301 basic medicineMaleneuroplasticitySensory systemNerve Tissue ProteinsCREBBlindness03 medical and health sciences0302 clinical medicinechildrenNeuroplasticitymedicineGene familyHumansSensory deprivationChildMultidisciplinaryNeuronal Plasticitybiologyfunctional connectivityMultisensory integrationHuman brainSomatosensory CortexBiological Sciences030104 developmental biologymedicine.anatomical_structureGene Expression RegulationCerebral cortexbiology.proteinCREB familyFemaleNerve NetPsychologyNeuroscience030217 neurology & neurosurgery

description

Sensory deprivation reorganizes neurocircuits in the human brain. The biological basis of such neuroplastic adaptations remains elusive. In this study, we applied two complementary graph theory-based functional connectivity analyses, one to evaluate whole-brain functional connectivity relationships and the second to specifically delineate distributed network connectivity profiles downstream of primary sensory cortices, to investigate neural reorganization in blind children compared with sighted controls. We also examined the relationship between connectivity changes and neuroplasticity-related gene expression profiles in the cerebral cortex. We observed that multisensory integration areas exhibited enhanced functional connectivity in blind children and that this reorganization was spatially associated with the transcription levels of specific members of the cAMP Response Element Binding protein gene family. Using systems-level analyses, this study advances our understanding of human neuroplasticity and its genetic underpinnings following sensory deprivation.

https://hdl.handle.net/20.500.12530/31517