6533b82efe1ef96bd1293049

RESEARCH PRODUCT

Extremal Frobenius numbers in a class of sets

Gerd Hofmeister

subject

CombinatoricsClass (set theory)IntegerCoprime integersGeneral MathematicsGeneral functionMathematics

description

For given $ A_k=\{ a_1,\ldots ,a_k \}, a_1 \le \ldots \le a_k $ coprime the Frobenius number $ {g}(A_k) $ is defined as the greatest integer ${g}$ with no representation¶¶ ${g}=\sum \limits ^k_{i=1}\,x_i\,a_i,\;x_i\in {\Bbb N}_0 $ . ¶¶A class $ {\bf A}^*_k $ is given, such that ¶¶ $ {\overline {g}}^*(k,y):= \max \{ {g}(A_k)|A_k\in {\bf A}^*_k,\, a_k\le y \} $ ¶¶has the same asymptotic behaviour as the general function¶¶ $ {\overline {g}}(k,y):= \max \{ {g}(A_k)| a_k\le y \}\, {\rm for} \, y\to \infty $ .¶¶ Furthermore, ¶¶ $ {\underline {g}}^*(k,x):= \min \{ {g}(A_k)|A_k\in {\bf A}^*_k,\, a_1\ge x \} $ ¶¶is shown to have the same order of magnitude as the general function¶¶ $ {\underline {g}}(k,x):= \min \{ {g}(A_k)| a_1\ge x \}\,{\rm for} \, x\to \infty $ .

https://doi.org/10.1007/s000130050207