6533b82efe1ef96bd12931f1
RESEARCH PRODUCT
Non-Hermitian Hamiltonian for a Modulated Jaynes-Cummings Model with PT Symmetry
Fabio BagarelloRoberto PassanteMargherita LattucaLucia RizzutoSalvatore Spagnolosubject
PhysicsCoupling constantQuantum PhysicsJaynes–Cummings modelJaynes-Cummings modelFOS: Physical sciencesEquations of motionMathematical Physics (math-ph)Non-Hermitian HamiltoniansHermitian matrixAtomic and Molecular Physics and Opticssymbols.namesakePT symmetryAmplitudeQuantum mechanicssymbolsRotating wave approximationQuantum Physics (quant-ph)Hamiltonian (quantum mechanics)Subspace topologyMathematical Physicsdescription
We consider a two-level system such as a two-level atom, interacting with a cavity field mode in the rotating wave approximation, when the atomic transition frequency or the field mode frequency is periodically driven in time. We show that in both cases, for an appropriate choice of the modulation parameters, the state amplitudes in a generic $n${-}excitation subspace obey the same equations of motion that can be obtained from a \emph{static} non-Hermitian Jaynes-Cummings Hamiltonian with ${\mathcal PT}$ symmetry, that is with an imaginary coupling constant. This gives further support to recent results showing the possible physical interest of ${\mathcal PT}$ symmetric non-Hermitian Hamiltonians. We also generalize the well-known diagonalization of the Jaynes-Cummings Hamiltonian to the non-Hermitian case in terms of pseudo-bosons and pseudo-fermions, and discuss relevant mathematical and physical aspects.
year | journal | country | edition | language |
---|---|---|---|---|
2015-01-01 |