6533b82efe1ef96bd129331d

RESEARCH PRODUCT

Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry

Luis R. Domingo

subject

Electron densitymolecular mechanismsChemistry OrganicPharmaceutical ScienceElectronsElectron010402 general chemistry01 natural sciencesArticleAnalytical Chemistrylcsh:QD241-441Electron density distributionlcsh:Organic chemistryComputational chemistryDrug DiscoveryDFT reactivity indicesNon-covalent interactionsOrganic chemistryReactivity (chemistry)Physical and Theoretical Chemistryelectron densityQuantum chemicalchemistry.chemical_classification010405 organic chemistryOrganic Chemistrymolecular electron density theory0104 chemical scienceschemistrynon-covalent interactionsModels ChemicalChemistry (miscellaneous)molecular electron density theory; DFT reactivity indices; electron localisation function; non-covalent interactions; electron density; molecular mechanisms; chemical reactivityMolecular MedicineDensity functional theoryGround stateelectron localisation functionchemical reactivity

description

A new theory for the study of the reactivity in Organic Chemistry, named Molecular Electron Density Theory (MEDT), is proposed herein. MEDT is based on the idea that while the electron density distribution at the ground state is responsible for physical and chemical molecular properties, as proposed by the Density Functional Theory (DFT), the capability for changes in electron density is responsible for molecular reactivity. Within MEDT, the reactivity in Organic Chemistry is studied through a rigorous quantum chemical analysis of the changes of the electron density as well as the energies associated with these changes along the reaction path in order to understand experimental outcomes. Studies performed using MEDT allow establishing a modern rationalisation and to gain insight into molecular mechanisms and reactivity in Organic Chemistry.

10.3390/molecules21101319https://dx.doi.org/10.3390/molecules21101319