6533b82ffe1ef96bd1294842
RESEARCH PRODUCT
Witnessing non-Markovian effects of quantum processes through Hilbert-Schmidt speed
Hossein Rangani JahromiRosario Lo FrancoMahshid Khazaei ShadfarMahshid Khazaei ShadfarKobra MahdavipourKobra Mahdavipoursubject
Density matrixPhysicsQuantum PhysicsHIlbert-Schmidt speedFOS: Physical sciencesType (model theory)non-Markovianity01 natural sciencesNoise (electronics)Settore FIS/03 - Fisica Della Materia010305 fluids & plasmassymbols.namesakePauli exclusion principleOpen quantum systemQubitQuantum mechanics0103 physical sciencessymbolsDissipative systemQuditQubitSensitivity (control systems)Quantum Physics (quant-ph)010306 general physicsQuantumdescription
Non-Markovian effects can speed up the dynamics of quantum systems while the limits of the evolution time can be derived by quantifiers of quantum statistical speed. We introduce a witness for characterizing the non-Markovianity of quantum evolutions through the Hilbert-Schmidt speed (HSS), which is a special type of quantum statistical speed. This witness has the advantage of not requiring diagonalization of evolved density matrix. Its sensitivity is investigated by considering several paradigmatic instances of open quantum systems, such as one qubit subject to phase-covariant noise and Pauli channel, two independent qubits locally interacting with leaky cavities, V-type and $\Lambda $-type three-level atom (qutrit) in a dissipative cavity. We show that the proposed HSS-based non-Markovianity witness detects memory effects in agreement with the well-established trace distance-based witness, being sensitive to system-environment information backflows.
year | journal | country | edition | language |
---|---|---|---|---|
2020-01-01 | Physical Review A |