6533b82ffe1ef96bd12948af

RESEARCH PRODUCT

Isolation and Characterization of Novosphingobium sp. Strain MT1, a Dominant Polychlorophenol-Degrading Strain in a Groundwater Bioremediation System

Minna K. MännistöMarkku S. KulomaaJaakko A. PuhakkaMarja Tiirola

subject

Molecular Sequence DataFresh WaterDNA RibosomalPolymerase Chain ReactionApplied Microbiology and BiotechnologyMixed Function OxygenasesMicrobiologyBioreactorsBioremediationRNA Ribosomal 16SEnvironmental Microbiology and BiodegradationRibosomal DNAAlphaproteobacteriaSphingobium chlorophenolicumElectrophoresis Agar GelGeneticsEcologyStrain (chemistry)biologyAlphaproteobacteriaGenes rRNASequence Analysis DNA16S ribosomal RNAbiology.organism_classificationBiodegradation EnvironmentalRestriction fragment length polymorphismPolymorphism Restriction Fragment LengthWater Pollutants ChemicalTemperature gradient gel electrophoresisChlorophenolsFood ScienceBiotechnology

description

ABSTRACT A high-rate fluidized-bed bioreactor has been treating polychlorophenol-contaminated groundwater in southern Finland at 5 to 8°C for over 6 years. We examined the microbial diversity of the bioreactor using three 16S ribosomal DNA (rDNA)-based methods: denaturing gradient gel electrophoresis, length heterogeneity-PCR analysis, and restriction fragment length polymorphism analysis. The molecular study revealed that the process was dependent on a stable bacterial community with low species diversity. The dominant organism, Novosphingobium sp. strain MT1, was isolated and characterized. Novosphingobium sp. strain MT1 degraded the main contaminants of the groundwater, 2,4,6-trichlorophenol, 2,3,4,6-tetrachlorophenol, and pentachlorophenol, at 8°C. The strain carried a homolog of the pcpB gene, coding for the pentachlorophenol-4-monooxygenase in Sphingobium chlorophenolicum . Spontaneous deletion of the pcpB gene homolog resulted in the loss of degradation ability. Phenotypic dimorphism (planktonic and sessile phenotypes), low growth rate (0.14 to 0.15 h −1 ), and low-copy-number 16S rDNA genes (single copy) were characteristic of strain MT1 and other MT1-like organisms isolated from the bioreactor.

https://doi.org/10.1128/aem.68.1.173-180.2002