6533b82ffe1ef96bd129513e

RESEARCH PRODUCT

Black Hole Entropy Quantization

Jacobo Díaz-poloAlejandro CorichiAlejandro CorichiEnrique Fernández-borja

subject

High Energy Physics - TheoryHolographic principlePhysicsWhite holeBlack hole information paradoxBekenstein boundFOS: Physical sciencesGeneral Physics and AstronomyGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyGeneral Relativity and Quantum CosmologyTheoretical physicsClassical mechanicsHigh Energy Physics - Theory (hep-th)Extremal black holeBlack hole thermodynamicsBlack hole complementarityHawking radiation

description

Ever since the pioneer works of Bekenstein and Hawking, black hole entropy has been known to have a quantum origin. Furthermore, it has long been argued by Bekenstein that entropy should be quantized in discrete (equidistant) steps given its identification with horizon area in (semi-)classical general relativity and the properties of area as an adiabatic invariant. This lead to the suggestion that black hole area should also be quantized in equidistant steps to account for the discrete black hole entropy. Here we shall show that loop quantum gravity, in which area is {\it not} quantized in equidistant steps can nevertheless be consistent with Bekenstein's equidistant entropy proposal in a subtle way. For that we perform a detailed analysis of the number of microstates compatible with a given area and show consistency with the Bekenstein framework when an oscillatory behavior in the entropy-area relation is properly interpreted.

https://doi.org/10.1103/physrevlett.98.181301