6533b82ffe1ef96bd12952a8

RESEARCH PRODUCT

Ecological plant epigenetics: Evidence from model and non-model species, and the way forward

Sonja J. ProhaskaSonja J. ProhaskaKoen J. F. VerhoevenClaude BeckerMarie MirouzeChristina L. RichardsPeter F. StadlerEtienne BucherChristian LampeiWalter DurkaLars OpgenoorthEmiliano TrucchiJan EngelhardtOvidiu PaunConchita AlonsoBence GáspárStefan A. RensingStefan A. RensingIlkka KronholmVít LatzelMaria Colomé-tatchéMaria Colomé-tatchéKristian K. UllrichAndreas Gogol-döringThomas P. Van GurpKatrin HeerOliver BossdorfIvo Grosse

subject

0106 biological sciences0301 basic medicineEPIGENOMIC DIVERSITY[SDV]Life Sciences [q-bio]Species distributionINDIVIDUAL VARIATIONPhenotypic plasticity01 natural sciencesGenomephenotypic plasticityEpigenesis GeneticDNA METHYLATION VARIATIONComputingMilieux_MISCELLANEOUS0303 health sciencesEcologyEcologybioinformatiikkagenomiikkaGenomicsPlantsBioinformatics; ecological epigenetics; genomics; phenotypic plasticity; response to environment; Ecology Evolution Behavior and Systematics[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM]HabitatepigenetiikkainternationalPHYSCOMITRELLA-PATENSresponse to environmentPERENNIAL HERBkasviekologiaEcological epigeneticsSEQUENCING DATAEvolutionBioinformaticsEcology (disciplines)GenomicsBiology010603 evolutionary biology[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health sciencesPolyploidBehavior and SystematicskasvitEpigeneticsEcosystemEcology Evolution Behavior and Systematics030304 developmental biologyHERB HELLEBORUS-FOETIDUSPhenotypic plasticityBioinformatics ; Ecological Epigenetics ; Genomics ; Phenotypic Plasticity ; Response To EnvironmentAmbientaleResponse to environmentDNA Methylation15. Life on landEcological realismPlant ecology030104 developmental biologyARABIDOPSIS-THALIANABioinformatics ecological epigenetics genomics phenotypic plasticity response to environmentAdaptation[SDE.BE]Environmental Sciences/Biodiversity and EcologyNATURAL-POPULATIONS

description

Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes, stress responses, adaptation to habitat, and range distributions. While there has been some progress in revealing the role of epigenetics in ecological processes, studies with non-model species have so far been limited to describing broad patterns based on anonymous markers of DNA methylation. In contrast, studies with model species have benefited from powerful genomic resources, which contribute to a more mechanistic understanding but have limited ecological realism. Understanding the significance of epigenetics for plant ecology requires increased transfer of knowledge and methods from model species research to genomes of evolutionarily divergent species, and examination of responses to complex natural environments at a more mechanistic level. This requires transforming genomics tools specifically for studying non-model species, which is challenging given the large and often polyploid genomes of plants. Collaboration among molecular geneticists, ecologists and bioinformaticians promises to enhance our understanding of the mutual links between genome function and ecological processes.

10.1111/ele.12858https://hal.science/hal-02098587