6533b82ffe1ef96bd12953b9

RESEARCH PRODUCT

Discontinuous Galerkin semi-Lagrangian method for Vlasov-Poisson

Francesco VecilMichel MehrenbergerNicolas Crouseilles

subject

T57-57.97Applied mathematics. Quantitative methods[SPI.PLASMA]Engineering Sciences [physics]/Plasmas010103 numerical & computational mathematicsSpace (mathematics)Poisson distribution01 natural sciences010101 applied mathematicssymbols.namesakeTest caseDistribution functionNumerical approximationDiscontinuous Galerkin methodScheme (mathematics)QA1-939symbolsApplied mathematics0101 mathematicsAlgorithmMathematicsLagrangian[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]Mathematics

description

We present a discontinuous Galerkin scheme for the numerical approximation of the one-dimensional periodic Vlasov-Poisson equation. The scheme is based on a Galerkin-characteristics method in which the distribution function is projected onto a space of discontinuous functions. We present comparisons with a semi-Lagrangian method to emphasize the good behavior of this scheme when applied to Vlasov-Poisson test cases. Une méthode de Galerkin discontinu est proposée pour l’approximation numérique de l’équation de Vlasov-Poisson 1D. L’approche est basée sur une méthode Galerkin-caractéristiques où la fonction de distribution est projetée sur un espace de fonctions discontinues. En particulier, la méthode est comparée à une méthode semi-Lagrangienne pour l’approximation de l’équation de Vlasov-Poisson.

10.1051/proc/2011022https://hal.science/hal-00544677/document