6533b82ffe1ef96bd1295cbb

RESEARCH PRODUCT

Organization and evolution of synthetic idiotypic networks

Elena AgliariLuca FerrucciLorenzo AstiAdriano Barra

subject

Condensed Matter Physics; Statistical and Nonlinear Physics; Statistics and ProbabilityTime FactorsTime FactorDistribution (number theory)Molecular Networks (q-bio.MN)FOS: Physical sciencesBit arrayThermodynamicComputer GraphicsCluster AnalysisHumansQuantitative Biology - Molecular NetworksMathematicsDiscrete mathematicsB-LymphocytesCluster AnalysiDegree (graph theory)Percolation (cognitive psychology)B-LymphocyteModels ImmunologicalGraph theoryDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksComputer GraphicDegree distributionFOS: Biological sciencesImmune SystemCore (graph theory)ThermodynamicsNode (circuits)Human

description

We introduce a class of weighted graphs whose properties are meant to mimic the topological features of idiotypic networks, namely the interaction networks involving the B-core of the immune system. Each node is endowed with a bit-string representing the idiotypic specificity of the corresponding B cell and a proper distance between any couple of bit-strings provides the coupling strength between the two nodes. We show that a biased distribution of the entries in bit-strings can yield fringes in the (weighted) degree distribution, small-worlds features, and scaling laws, in agreement with experimental findings. We also investigate the role of ageing, thought of as a progressive increase in the degree of bias in bit-strings, and we show that it can possibly induce mild percolation phenomena, which are investigated too.

10.1103/physreve.85.051909http://arxiv.org/abs/1112.2066