6533b82ffe1ef96bd1295db9
RESEARCH PRODUCT
Superlight small bipolarons from realistic long-range Coulomb and Fröhlich interactions
G. SicaG. SicaJohn SamsonA. S. AlexandrovA. S. Alexandrovsubject
Condensed Matter::Quantum GasesPhysicsBipolaronCondensed matter physicsCondensed Matter - SuperconductivityExchange interactionCharge (physics)Condensed Matter PhysicsPolaronElectronic Optical and Magnetic MaterialsCondensed Matter - Strongly Correlated ElectronsDensity of statesCoulombCondensed Matter::Strongly Correlated ElectronsGround stateSpin-½description
We report analytical and numerical results on the two-particle states of the polaronic t-Jp model derived recently with realistic Coulomb and electron-phonon (Frohlich) interactions in doped polar insulators. Eigenstates and eigenvalues are calculated for two different geometries. Our results show that the ground state is a bipolaronic singlet, made up of two polarons. The bipolaron size increases with increasing ratio of the polaron hopping integral t to the exchange interaction Jp but remains small compared to the system size in the whole range 0<t/Jp<1. Furthermore, the model exhibits a phase transition to a superconducting state with a critical temperature well in excess of 100K. In the range t/Jp<1, there are distinct charge and spin gaps opening in the density of states, specific heat, and magnetic susceptibility well above Tc.
year | journal | country | edition | language |
---|---|---|---|---|
2011-12-14 | Physical Review B |