6533b82ffe1ef96bd129641d
RESEARCH PRODUCT
Nitrous oxide emission hotspots from organic soils in Europe
Rene DechowPäivi MäkirantaPoul Erik LærkeKristiina ReginaT. LeppeltP. E. Læ RkeS. GebbertHeinrich HöperPaavo OjanenMarja MaljanenAnnette FreibauerStephan GlatzelAnnalea LohilaKari MinkkinenMatthias DröslerJärvi JärveojaSabine FiedlerMonika StrömgrenJürgen AugustinÜLo Mandersubject
chemistry.chemical_compoundchemistryEnvironmental chemistrySoil waterEnvironmental scienceNitrous oxidedescription
Abstract. Organic soils are a main source of direct nitrous oxide (N2O) emissions, an important greenhouse gas (GHG). Observed N2O emissions from organic soils are highly variable in space and time which causes high uncertainties in national emission inventories. Those uncertainties could be reduced when relating the upscaling process to a priori identified key drivers by using available N2O observations from plot scale in empirical approaches. We used the empirical fuzzy modelling approach MODE to identify main drivers for N2O and utilize them to predict the spatial emission pattern of European organic soils. We conducted a meta study with a total amount of 659 annual N2O measurements which was used to derive separate models for different land use types. We applied our models to available, spatial explicit input driver maps to upscale N2O emissions on European level and compared the inventory with recently published IPCC emission factors. The final statistical models explained up to 60% of the N2O variance. Our study results showed that cropland and grasslands emitted the highest N2O fluxes 0.98 ± 1.08 and 0.58 ± 1.03 g N2O-N m−2 a−1, respectively. High fluxes from cropland sites were mainly controlled by low soil pH-value and deep drained groundwater tables. Grassland hotspot emissions were strongly related to high amount of N-fertilizer inputs and warmer winter temperatures. In contrast N2O fluxes from natural peatlands were predominantly low (0.07±0.27 g N2O-N m−2 a−1) and we found no relationship with the tested drivers. The total inventory for direct N2O emissions from organic soils in Europe amount up to 149.5 Gg N2O-N a−1, which included also fluxes from forest and peat extraction sites and exceeds the inventory calculated by IPCC emission factors of 87.4 Gg N2O-N a−1. N2O emissions from organic soils represent up to 13% of total European N2O emissions reported in the European Union (EU) greenhouse gas inventory of 2011 from only 7% of the EU area. Thereby the model demonstrated that with up to 85% the major part of the inventory is induced by anthropogenic management, which shows the significant reduction potential by rewetting and extensivation of agricultural used peat soils.
year | journal | country | edition | language |
---|---|---|---|---|
2014-06-16 |