6533b830fe1ef96bd129665f

RESEARCH PRODUCT

An STE12 gene identified in the mycorrhizal fungus Glomus intraradices restores infectivity of a hemibiotrophic plant pathogen

Christine ArnouldPascale M. A. SeddasOdile ChatagnierMarie TollotBernard DumasDiederik Van TuinenVivienne Gianinazzi-pearsonJoanne Wong Sak Hoi

subject

0106 biological sciencesPhysiologyGLOMUS INTRARADICESGenes FungalMolecular Sequence DataMutantGerminationMYCORHIZES ARBUSCULAIRESSaccharomyces cerevisiaePlant SciencePlant Roots01 natural sciencesMicrobiologyFungal ProteinsGlomeromycota03 medical and health sciencesHOST PENETRATIONFungal StructuresGene Expression Regulation FungalMycorrhizaeSequence Homology Nucleic AcidMedicago truncatulaColletotrichumAmino Acid SequenceRNA MessengerTRANSCRIPTION FACTORMycorrhizaSTE12030304 developmental biologyPhaseolus0303 health sciencesFungal proteinbiologyMYCORRHIZAReverse Transcriptase Polymerase Chain ReactionColletotrichum lindemuthianumGene Expression Profilingfungifood and beveragesSpores Fungalbiology.organism_classificationMedicago truncatula[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyColletotrichumMutationHEMIBIOTROPHIC PATHOGENSequence AlignmentGLOMEROMYCOTA010606 plant biology & botany

description

International audience; * • Mechanisms of root penetration by arbuscular mycorrhizal (AM) fungi are unknown and investigations are hampered by the lack of transformation systems for these unculturable obligate biotrophs. Early steps of host infection by hemibiotrophic fungal phytopathogens, sharing common features with those of AM fungal colonization, depend on the transcription factor STE12. * • Using degenerated primers and rapid amplification of cDNA ends, we isolated the full-length cDNA of an STE12-like gene, GintSTE, from Glomus intraradices and profiled GintSTE expression by real-time and in situ RT-PCR. GintSTE activity and function were investigated by heterologous complementation of a yeast ste12Δ mutant and a Colletotrichum lindemuthianum clste12Δ mutant. * • Sequence data indicate that GintSTE is similar to STE12 from hemibiotrophic plant pathogens, especially Colletotrichum spp. Introduction of GintSTE into a noninvasive mutant of C. lindemuthianum restored fungal infectivity of plant tissues. GintSTE expression was specifically localized in extraradicular fungal structures and was up-regulated when G. intraradices penetrated roots of wild-type Medicago truncatula as compared with an incompatible mutant. * • Results suggest a possible role for GintSTE in early steps of root penetration by AM fungi, and that pathogenic and symbiotic fungi may share common regulatory mechanisms for invasion of plant tissues.

10.1111/j.1469-8137.2008.02696.xhttps://hal.inrae.fr/hal-02665717