6533b830fe1ef96bd1296812

RESEARCH PRODUCT

Functionalization of Active Ester-Based Polymersomes for Enhanced Cell Uptake and Stimuli-Responsive Cargo Release

Rudolf ZentelRomina ForstFrank DepoixPhilipp HellerNicole MohrCinja KappelKarl FischerMartin SchererMatthias Bros

subject

Polymers and PlasticsOctoxynolPolymersMannoseBioengineering02 engineering and technology010402 general chemistryMethacrylate01 natural sciencesBiomaterialschemistry.chemical_compoundDrug Delivery SystemsAmphiphilePolymer chemistryMaterials ChemistryHumansMethacrylamidePrepolymerChemistryVesicleDioxolanesEstersHydrogen-Ion Concentration021001 nanoscience & nanotechnology0104 chemical sciencesMembranePolymersomeBiophysicsMethacrylates0210 nano-technologyHydrophobic and Hydrophilic Interactions

description

Poly(2,3-dihydroxypropyl methacrylamide) (P(DHPMA))-based amphiphilic block copolymers have recently proven to form polymer vesicles (polymersomes). In this work, we further expand their potential by incorporating (i) units for pH-dependent disintegration into the hydrophobic membrane and (ii) mannose as targeting unit into the hydrophilic block. This last step relies on the use of an active ester prepolymer. We confirm the stability of the polymersomes against detergents like Triton X-100 and their low cytotoxicity. The incorporation of 2-(2,2-dimethyl-1,3-dioxolane-4-yl)ethyl methacrylate into the hydrophobic block (lauryl methacrylate) allows a pH-responsive disintegration for cargo release. Efficient decomposition of the polymersome structure is monitored by dynamic light scattering. It is thus possible to include an active enzyme (glucose oxidase), which gets only active (is set free) after vesicle disintegration. In addition, the introduction of mannose as targeting structure allows enhanced and selective targeting of dendritic cells.

https://doi.org/10.1021/acs.biomac.6b01049