6533b830fe1ef96bd1296f2a
RESEARCH PRODUCT
false
subject
Physicssymbols.namesakePhase spaceGaussianLattice (order)Quantum systemsymbolsHilbert spaceGeneral Physics and AstronomyWigner distribution functionMathematical physicsdescription
We study the Wigner function for a quantum system with a discrete, infinite dimensional Hilbert space, such as a spinless particle moving on a one dimensional infinite lattice. We discuss the peculiarities of this scenario and of the associated phase space construction, propose a meaningful definition of the Wigner function in this case, and characterize the set of pure states for which it is non-negative. We propose a measure of non-classicality for states in this system which is consistent with the continuum limit. The prescriptions introduced here are illustrated by applying them to localized and Gaussian states, and to their superpositions.
| year | journal | country | edition | language |
|---|---|---|---|---|
| 2012-10-03 | New Journal of Physics |