6533b830fe1ef96bd129706a
RESEARCH PRODUCT
Mitochondrial dynamics and metabolism in induced pluripotency.
Josema TorresJavier PrietoJavier PrietoJuan Carlos Izpisua BelmonteXavier Ponsodasubject
0301 basic medicineAdultAgingCell typeSomatic cellCellInduced Pluripotent Stem CellsBiologyBiochemistryMitochondrial Dynamics03 medical and health sciences0302 clinical medicineEndocrinologyGeneticsmedicineHumansInduced pluripotent stem cellMolecular BiologyCell DifferentiationCell BiologyCellular ReprogrammingPhenotypeCell biology030104 developmental biologymedicine.anatomical_structureEctopic expressionReprogramming030217 neurology & neurosurgeryFunction (biology)Signal Transductiondescription
Somatic cells can be reprogrammed to pluripotency by either ectopic expression of defined factors or exposure to chemical cocktails. During reprogramming, somatic cells undergo dramatic changes in a wide range of cellular processes, such as metabolism, mitochondrial morphology and function, cell signaling pathways or immortalization. Regulation of these processes during cell reprograming lead to the acquisition of a pluripotent state, which enables indefinite propagation by symmetrical self-renewal without losing the ability of reprogrammed cells to differentiate into all cell types of the adult. In this review, recent data from different laboratories showing how these processes are controlled during the phenotypic transformation of a somatic cell into a pluripotent stem cell will be discussed.
year | journal | country | edition | language |
---|---|---|---|---|
2020-05-01 | Experimental gerontology |