6533b830fe1ef96bd1297af9

RESEARCH PRODUCT

$N$ identical particles and one particle to entangle them all

Bruno BellomoRosario Lo FrancoGiuseppe Compagno

subject

Settore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciQuantum opticFOS: Physical sciencesQuantum entanglement01 natural sciencesSettore FIS/03 - Fisica Della MateriaQuantum state engineeringQuantum entanglement010309 opticsplatform[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Quantum measurement0103 physical sciencesQuantum information architectures &ampStatistical physicsQuantum information010306 general physicsQuantumComputingMilieux_MISCELLANEOUSBosonPhysicsQuantum PhysicsFermionEntanglement productionUniversality (dynamical systems)MultipartiteQuantum Physics (quant-ph)Identical particles

description

In quantum information W states are a central class of multipartite entangled states because of their robustness against noise and use in many quantum processes. Their generation however remains a demanding task whose difficulty increases with the number of particles. We report a simple scalable conceptual scheme where a single particle in an ancilla mode works as entanglement catalyst of W state for other $N$ separated identical particles. A crucial novel aspect of the scheme, which exploits basically spatial indistinguishability, is its universality, being applicable without essential changes to both bosons and fermions. Our proposal represents a new paradigm within experimental preparation of many-particle entanglement based on quantum indistinguishability.

https://dx.doi.org/10.48550/arxiv.1704.06359