6533b830fe1ef96bd1297ca2

RESEARCH PRODUCT

Relaxation for a Class of Control Systems with Unilateral Constraints

Francesca VetroNikolaos S. PapageorgiouCalogero Vetro

subject

Class (set theory)Partial differential equationApplied Mathematics010102 general mathematicsMaximal monotone mapNonlinear control01 natural sciencesAdmissible relaxation010101 applied mathematicsConstraint (information theory)CombinatoricsMonotone polygonQ-regularizationSettore MAT/05 - Analisi MatematicaControl systemRelaxation (approximation)0101 mathematicsLower semicontinuous multifunctionVariable (mathematics)MathematicsContinuous selection

description

We consider a nonlinear control system involving a maximal monotone map and with a priori feedback. We assume that the control constraint multifunction $U(t,x)$ is nonconvex valued and only lsc in the $x \in \mathbb{R}^{N}$ variable. Using the Q-regularization (in the sense of Cesari) of $U(t,\cdot )$, we introduce a relaxed system. We show that this relaxation process is admissible.

10.1007/s10440-019-00270-4http://hdl.handle.net/10447/423785