6533b830fe1ef96bd1297d05

RESEARCH PRODUCT

Synthesis, Characterization, and Cu(2+) Coordination Studies of a 3-Hydroxy-4-pyridinone Aza Scorpiand Derivative.

Javier Pitarch-jarqueMario Alberto Leyva-peraltaEnrique García-españaHisila Santacruz-ortegaÁLvaro Martínez-camarenaLuis Miguel López-martínezBegoña VerdejoAntonio Doménech-carbóRoberto TejeroRosa-elena NavarroRogerio R. Sotelo-mundo

subject

inorganic chemicalsMagnetic Resonance SpectroscopyStereochemistryPyridinesPyridonesPotentiometric titrationProtonationChemistry Techniques Synthetic010402 general chemistry010403 inorganic & nuclear chemistryElectrochemistryCrystallography X-Ray01 natural sciencesMedicinal chemistryAntioxidantsCoordination complexInorganic Chemistrychemistry.chemical_compoundStructure-Activity RelationshipCoordination ComplexesHumansChelationPhysical and Theoretical ChemistryCell ProliferationChelating Agentschemistry.chemical_classificationLigandHydrogen-Ion Concentration0104 chemical scienceschemistryPotentiometrySpectrophotometry UltravioletCyclic voltammetryDerivative (chemistry)CopperHeLa Cells

description

The synthesis, acid-base behavior, and Cu(2+) coordination chemistry of a new ligand (L1) consisting of an azamacrocyclic core appended with a lateral chain containing a 3-hydroxy-2-methyl-4(1H)-pyridinone group have been studied by potentiometry, cyclic voltammetry, and NMR and UV-vis spectroscopy. UV-vis and NMR studies showed that phenolate group was protonated at the highest pH values [log K = 9.72(1)]. Potentiometric studies point out the formation of Cu(2+) complexes of 1:2, 2:2, 4:3, 1:1, and 2:1 Cu(2+)/L1 stoichiometries. UV-vis analysis and electrochemical studies evidence the implication of the pyridinone moieties in the metal coordination of the 1:2 Cu(2+)/L1 complexes. L1 shows a stronger chelating ability than the reference chelating ligand deferiprone. While L1 shows no cytotoxicity in HeLa and ARPE-19 human cell lines (3.1-25.0 μg/mL), it has significant antioxidant activity, as denoted by TEAC assays at physiological pH. The addition of Cu(2+) diminishes the antioxidant activity because of its coordination to the pyridinone moiety phenolic group.

10.1021/acs.inorgchem.6b01006https://pubmed.ncbi.nlm.nih.gov/27433814