6533b831fe1ef96bd1298628

RESEARCH PRODUCT

Fiber-based device for the detection of low-intensity fluctuations of ultrashort pulses

Charles Henri HageBertrand KiblerChristophe Finot

subject

Femtosecond pulse shapingMaterials science02 engineering and technologySpectrum Analysis Raman01 natural sciences010309 opticssymbols.namesake020210 optoelectronics & photonicsOpticsMultiphoton intrapulse interference phase scan0103 physical sciences0202 electrical engineering electronic engineering information engineeringFiberElectrical and Electronic EngineeringSelf-phase modulationEngineering (miscellaneous)[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryOptical DevicesEquipment DesignAtomic and Molecular Physics and OpticssymbolsbusinessUltrashort pulseBandwidth-limited pulseRaman scatteringPhotonic-crystal fiber

description

International audience; We describe a fiber-based device that can significantly enhance the low intensity fluctuations of an ultrashort pulse train to detect them more easily than with usual direct detection systems. Taking advantage of the Raman intrapulse effect that progressively shifts the central frequency of a femtosecond pulse propagating in an anomalous dispersion fiber, a subsequent spectral filtering can efficiently increase the level of fluctuations by more than one order of magnitude. We show that attention has to be paid to maintain the shape of the statistical distribution unaffected by the nonlinear process.

https://hal.archives-ouvertes.fr/hal-00644853