6533b831fe1ef96bd12986c6

RESEARCH PRODUCT

Direct investigation of viscosity of an atypical inner membrane of Bacillus spores: A molecular rotor/FLIM study

Dominique ChampionPatrick GervaisNeveen A. HosnyMarina K. KuimovaPauline LoisonJean-marie Perrier-cornet

subject

BiophysicsAnalytical chemistryBacillus subtilis010402 general chemistry01 natural sciencesBiochemistryEndosporeMicroviscosity03 medical and health sciencesViscosityLipid bilayer030304 developmental biologySpores Bacterial0303 health sciencesFluorescence Lifetime Imaging (FLIM)biologyViscosityfungiCell BiologyLipid membranesbiology.organism_classification0104 chemical sciencesSporeMicroviscosityMembraneMicroscopy FluorescenceMolecular rotorsBiophysicsBacterial sporeBacillus subtilis sporesBacillus subtilis

description

Abstract We utilize the fluorescent molecular rotor Bodipy-C12 to investigate the viscoelastic properties of hydrophobic layers of bacterial spores Bacillus subtilis. The molecular rotor shows a marked increase in fluorescence lifetime, from 0.3 to 4 ns, upon viscosity increase from 1 to 1500 cP and can be incorporated into the hydrophobic layers within the spores from dormant state through to germination. We use fluorescence lifetime imaging microscopy to visualize the viscosity inside different compartments of the bacterial spore in order to investigate the inner membrane and relate its compaction to the extreme resistance observed during exposure of spores to toxic chemicals. We demonstrate that the bacterial spores possess an inner membrane that is characterized by a very high viscosity, exceeding 1000 cP, where the lipid bilayer is likely in a gel state. We also show that this membrane evolves during germination to reach a viscosity value close to that of a vegetative cell membrane, ca. 600 cP. The present study demonstrates quantitative imaging of the microscopic viscosity in hydrophobic layers of bacterial spores Bacillus subtilis and shows the potential for further investigation of spore membranes under environmental stress.

10.1016/j.bbamem.2013.06.028http://dx.doi.org/10.1016/j.bbamem.2013.06.028