6533b831fe1ef96bd1298ee7

RESEARCH PRODUCT

Phosphoglycerate dehydrogenase genes differentially affect Arabidopsis metabolism and development.

Roc RosArmand D. AnomanAlejandro Torres-monchoJesús Muñoz-bertomeuRubén Casatejada-anchelAlisdair R. FernieSergio G. NebauerSara Rosa-téllez

subject

0106 biological sciences0301 basic medicineMutantArabidopsisPlant ScienceGenes Plant01 natural sciencesGene Expression Regulation EnzymologicSerine03 medical and health scienceschemistry.chemical_compoundSulfur assimilationBiosynthesisGene Expression Regulation PlantArabidopsisGeneticsSerinePhosphoglycerate dehydrogenaseGenePhosphoglycerate DehydrogenasePSPbiologyGeneral MedicinePhosphorylated pathway of serine biosynthesisbiology.organism_classificationBiosynthetic Pathways030104 developmental biologyPGDHBiochemistrychemistryEssential geneFISIOLOGIA VEGETALPhosphoserine phosphataseAgronomy and Crop Science010606 plant biology & botany

description

[EN] Unlike animals, plants possess diverse L-serine (Ser) biosynthetic pathways. One of them, the Phosphorylated Pathway of Serine Biosynthesis (PPSB) has been recently described as essential for embryo, pollen and root development, and required for ammonium and sulfur assimilation. The first and rate limiting step of PPSB is the reaction catalyzed by the enzyme phosphoglycerate dehydrogenase (PGDH). In Arabidopsis, the PGDH family consists of three genes, PGDH1, PGDH2 and PGDH3. PGDH1 is characterized as being the essential gene of the family. However, the biological significance of PGDH2 and PGDH3 remains unknown. In this manuscript, we have functionally characterized PGDH2 and PGDH3. Phenotypic, metabolomic and gene expression analysis in PGDH single, double and triple mutants indicate that both PGDH2 and PGDH3 are functional, affecting plant metabolism and development. PGDH2 has a stronger effect on plant growth than PGDH3, having a partial redundant role with PGDH1. PGDH3, however, could have additional functions in photosynthetic cells unrelated to Ser biosynthesis.

10.1016/j.plantsci.2021.110863https://pubmed.ncbi.nlm.nih.gov/33775368