6533b831fe1ef96bd1299662
RESEARCH PRODUCT
Deformations of the seventh order Peregrine breather solutions of the NLS equation with twelve parameters.
Pierre Gaillardsubject
NLS equationAkhmediev's solutions.Nonlinear Sciences::Exactly Solvable and Integrable Systems[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Peregrine breathers[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Akhmediev's solutions[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Nonlinear Sciences::Pattern Formation and Solitonsdescription
We study the solutions of the one dimensional focusing NLS equation. Here we construct new deformations of the Peregrine breather of order 7 with 12 real parameters. We obtain new families of quasi-rational solutions of the NLS equation. With this method, we construct new patterns of different types of rogue waves. We recover triangular configurations as well as rings isolated. As already seen in the previous studies, one sees appearing for certain values of the parameters, new configurations of concentric rings.
| year | journal | country | edition | language |
|---|---|---|---|---|
| 2013-10-05 |