6533b831fe1ef96bd1299a6b

RESEARCH PRODUCT

Relaxation of photogenerated carriers in P3HT:PCBM organic blends.

Thomas MoehlHenk J. BolinkJuan BisquertMarinus KunstVladimir G. KytinGermà Garcia-belmonte

subject

Materials scienceTime FactorsGeneral Chemical EngineeringThiophenesMolecular physicschemistry.chemical_compoundNuclear magnetic resonanceThermalSolar EnergyEnvironmental ChemistryGeneral Materials ScienceMicrowavesRange (particle radiation)photochemistryRelaxation (NMR)General EnergychemistryChlorobenzenesolar cellstransportCharge carrierPolymer blendFullerenesDispersion (chemistry)Excitationpolymer blendscharge carriers

description

Relaxing in the sunlight. Long time-transient decays of photogenerated carriers in P3HT:PCBM blends for organic solar cells are interpreted in terms of the relaxation of hole carriers in a broad density of states. The after-pulse time-resolved microwave conductivity (TRMC) decays observed in P3HT:PCBM blends display a dependence on time close to t−β, independent of excitation intensity, in the 10 ns–1 μs range. This is explained in terms of the relaxation of carriers in a Gaussian density of states (DOS). The model is based on a demarcation level that moves with time by thermal release and retrapping of initially trapped carriers. The model shows that when the disorder is large the after-pulse decay of the type t−β is obtained, while at low disorder and large temperature the carrier distribution becomes independent of time. In the measurements different β values were observed depending on the solvent used for spin-coating: 0.4–0.6 for chlorobenzene and 0.3–0.4 for toluene. The model was applied to extract the shape of the DOS from the TRMC decays, giving a dispersion parameter of about 120 meV for blends with high P3HT content.

10.1002/cssc.200900002https://pubmed.ncbi.nlm.nih.gov/19347835