6533b832fe1ef96bd129a261
RESEARCH PRODUCT
Perturbations of Jordan Blocks
Johannes Sjöstrandsubject
CombinatoricsPhysicsJordan matrixsymbols.namesakeOpen unitSpectrum (functional analysis)symbolsSpectral stabilityRandom perturbationResolventdescription
In this chapter we shall study the spectrum of a random perturbation of the large Jordan block A0, introduced in Sect. 2.4: $$\displaystyle A_0=\begin {pmatrix}0 &1 &0 &0 &\ldots &0\\ 0 &0 &1 &0 &\ldots &0\\ 0 &0 &0 &1 &\ldots &0\\ . &. &. &. &\ldots &.\\ 0 &0 &0 &0 &\ldots &1\\ 0 &0 &0 &0 &\ldots &0 \end {pmatrix}: {\mathbf {C}}^N\to {\mathbf {C}}^N. $$ Zworski noticed that for every z ∈ D(0, 1), there are associated exponentially accurate quasimodes when N →∞. Hence the open unit disc is a region of spectral instability. We have spectral stability (a good resolvent estimate) in \(\mathbf {C}\setminus \overline {D(0,1)}\), since ∥A0∥ = 1. σ(A0) = {0}.
year | journal | country | edition | language |
---|---|---|---|---|
2019-01-01 |