6533b832fe1ef96bd129a531

RESEARCH PRODUCT

Photooxidation Behavior of a LDPE/Clay Nanocomposite Monitored through Creep Measurements

Francesco Paolo La MantiaM. BiondoMarco MorrealeMaria Chiara MistrettaFiorenza Sutera

subject

Materials sciencePolymers and PlasticsPolymer nanocompositeIntrinsic viscosityKinetics02 engineering and technology010402 general chemistry01 natural sciencesArticlecreeplcsh:QD241-441lcsh:Organic chemistrynanocompositesIrradiationComposite materialMelt flow indexNanocompositeNanocompositephotooxidationChemistry (all)General Chemistrycreep; photooxidation; nanocomposites021001 nanoscience & nanotechnology0104 chemical sciencesLow-density polyethyleneCreep0210 nano-technology

description

Creep behavior of polymer nanocomposites has not been extensively investigated so far, especially when its effects are combined with those due to photooxidation, which are usually studied in completely independent ways. In this work, the photooxidation behavior of a low density polyethylene/organomodified clay nanocomposite system was monitored by measuring the creep curves obtained while subjecting the sample to the combined action of temperature, tensile stress, and UV radiation. The creep curves of the irradiated samples were found to be lower than those of the non-irradiated ones and progressively diverging, because of the formation of branching and cross-linking due to photooxidation. This was further proved by the decrease of the melt index and the increase of the intrinsic viscosity; at the same time, the formation of carbonyl groups was observed. This behavior was more observable in the nanocomposite sample, because of its faster photooxidation kinetics.

10.3390/polym9080308http://europepmc.org/articles/PMC6419066