6533b832fe1ef96bd129aee0
RESEARCH PRODUCT
Experimental characterization of Ruthenium-based Dye Sensitized Solar Cells and study of light-soaking effect impact on performance
Andrea AndoGabriele AdamoAntonino ParisiAlessandro BusaccaAlfonso Carmelo CinoRiccardo Pernicesubject
Laser Beam Induced Current (LBIC)Materials scienceIrradiancechemistry.chemical_element02 engineering and technology01 natural sciencesSettore ING-INF/01 - Elettronicaphotovoltaic0103 physical sciences010302 applied physicsDye Sensitized Solar cells (DSSCs)electro-optical characterizationbusiness.industryOpen-circuit voltageEnergy conversion efficiencySettore ING-INF/02 - Campi Elettromagneticilight soaking021001 nanoscience & nanotechnologyCharacterization (materials science)RutheniumWavelengthDye-sensitized solar cellchemistryOptoelectronics0210 nano-technologybusinessShort circuitdescription
In this paper, we present an experimental investigation on the performance of Ruthenium-based Dye Sensitized Solar Cells (DSSCs) at different irradiance levels, incident wavelengths and hours of illumination. In particular, the measurements have been aimed at studying the performance variation due to light soaking effect since this phenomenon has noteworthy practical implications, such as stability tests of DSSCs. Our results show that the short circuit current density, the open circuit voltage and the conversion efficiency η increase with the hours of light soaking. Finally, the observed phenomenon is reversible, and thus the performance decreases again when the cell is kept in the dark.
year | journal | country | edition | language |
---|---|---|---|---|
2016-01-01 |