6533b833fe1ef96bd129b3e5
RESEARCH PRODUCT
Characterization of the surface emissivity and temperature at heterogeneous sites for different zenith viewing angles using remote sensing
Lluís Pérez Planellssubject
canopyvariación angulartemperaturateledetección:CIENCIAS DE LA TIERRA Y DEL ESPACIO [UNESCO]TSTemisividadUNESCO::CIENCIAS DE LA TIERRA Y DEL ESPACIOvegetacióndescription
Para estimar con precisión la temperatura de la superficie terrestre (TST) es necesario conocer con exactitud la emisividad de dicha superficie. Sobre zonas vegetadas, la estimación de la emisividad es más compleja debido a las reflexiones múltiples de la radiación (emitida y reflejada) entre los distintos elementos que forman la vegetación (suelo y elementos de la planta). En la literatura pueden encontrarse diversos métodos que modelan la emisividad de la vegetación. En este trabajo, se ha profundizado en el análisis y evaluación de los modelos de transferencia radiativa (MTR) para la obtención de la emisividad direccional de la vegetación. Los modelos utilizados para este estudio han sido: FR97 (François et al., 1997), Mod3 (François, 2002), Rmod3 (Shi, 2011), REN15 (Ren et al., 2015), CE-P (Cao et al., 2018) y 4SAIL (Verhoef et al., 2007). Estos modelos han sido validados con medidas in-situ, aplicados a datos de satélite y evaluados cuando las emisividades resultantes se usan como entrada de un algoritmo split-window (SW) para la obtención de la TST. Validación de los MTR Los MTR fueron evaluados realizando medidas in-situ de emisividad sobre una muestra de rosales y dos suelos con características distintas: un suelo orgánico con alta emisividad y un suelo inorgánico (arena) con baja emisividad. Para la realización de medidas in-situ se utilizaron dos radiómetros CE312 con cinco canales estrechos entre 8 y 13 µm, los cuales permitieron aplicar un método de separación temperatura-emisividad (TES). En un primer estudio, donde se utilizó un suelo orgánico, se realizaron 15 medidas de radiancia para 7 ángulos de observación y 6 valores de LAI en cada caso. En un segundo estudio, el suelo orgánico se cambió por arena y se tomaron 15 medidas de radiancia para 2 ángulos de observación distintos y 6 valores de LAI. Además, para la aplicación de los modelos se midieron las muestras de hoja de rosal y de los dos suelos. De estas medidas se obtuvo una emisividad constante en el caso de las hojas, cercana a 0,98. Para el suelo orgánico, la emisividad obtenida varió entre 0,949 y 0,967 según el canal espectral, mientras que para el suelo inorgánico la emisividad mostró tener un mayor contraste espectral, con una emisividad entre 0,732 y 0,962. La emisividad derivada de los MTR se comparó primero con la emisividad medida en observación a nadir. Para el suelo orgánico, los resultados mostraron que las medidas de emisividad TES no diferían con la variación del LAI. Sin embargo, sobre el suelo inorgánico se observó en la emisividad TES el incremento en emisividad predicho por los MTR, principalmente debido a la mayor diferencia entre la emisividad del suelo inorgánico y de las hojas. Esta variación de la emisividad con el LAI, observada con las medidas in-situ, fue ajustada mediante regresión, obteniendo coeficientes de correlación entre 0,986 y 0,999 según el canal espectral. El MTR Mod3 obtuvo valores más cercanos a las medidas TES que el resto de modelos, teniendo en cuenta el análisis estadístico tanto del suelo orgánico como inorgánico. Estos mejores resultados del MTR Mod3 destacaron especialmente en aquellos canales donde la diferencia entre la emisividad de suelo y hoja era mayor. La evaluación de la emisividad obtenida en función del ángulo de observación mostró poca variación, tanto en el caso de los MTR como en el de las medidas TES, sobre cualquiera de las muestras con los distintos suelos utilizados. Por lo tanto, para condiciones similares a las analizadas en este estudio no se espera ninguna variación de la emisividad de la vegetación con el ángulo. En cuanto a la comparación entre los MTR y el método TES, para el suelo orgánico, donde la diferencia en emisividad entre suelo y hoja es mínima, el modelo Mod3 en global obtuvo los valores más cercanos a la emisividad TES en términos de RMSE. Sin embargo, estos valores fueron muy próximos a los obtenidos por los modelos FR97, REN15, CE-P y 4SAIL, con diferencias inferiores a la incertidumbre de las medidas. Si analizamos los resultados en función del intervalo de variación del LAI, el MTR que mejor se ajustó a los valores TES obtenidos de las medidas realizadas cuando LAI > 1,5 m2/m2 fue el MTR Mod3, pero para LAI 0,984). Sin embargo, la emisividad obtenida por los MTR (entre 0,97 y 0,98) resultaba más realista, teniendo en cuenta el tipo de superficie de la zona de estudio. Con todo ello, los MTR demuestran proporcionar buenos resultados en la estimación de la emisividad requerida para la determinación de la TST desde satélites con sensores térmicos como el MODIS, ya que los resultados son similares o, en algunos casos, incluso mejores a los obtenidos mediante los procedimientos actualmente operativos. Estos resultados hacen interesante la extensión de los MTR a otros sensores satelitales, para los que permitiría obtener la emisividad de la superficie considerando las posibles variaciones en la cubierta vegetal en términos de LAI. Introduction and objectives Land surface temperature (LST) was recognized as an essential climate variable by the World Meteorological Organization, as it is directly related with the energy balance between the Earth surface and the atmosphere. Atmospheric absorption and surface emissivity corrections are the main factors that affect an accurate retrieval of LST for data acquired from satellite sensors in the thermal infrared (TIR) spectrum. Therefore, an accurate characterization of the surface emissivity on the TIR spectrum is required for an accurate retrieval of the LST. The surface emissivity was well-characterized in the last decades for homogeneous and flat surfaces, e.g. water or arid bare soil sites. However, for heterogeneous surfaces the emissivity modeling is a more challenging point because of its structural complexity. The difficulties on the estimation of the canopy emissivity are higher due to the multiple reflections of the radiance (emitted and reflected) among the canopy components (soil and plant elements). For that, it is necessary to consider the multiple reflections that take place inside the canopy when the emissivity is being modeled. Different canopy emissivity models are found in the literature. These models can be classified as: geometrical models, bidirectional reflectance distribution function (BRDF) models and radiative transfer models (RTMs). In this work, several RTMs to obtain the directional canopy emissivity were analyzed and evaluated. These RTMs were: FR97 (François et al., 1997), Mod3 (François, 2002), Rmod3 (Shi, 2011), REN15 (Ren et al., 2015), CE-P (Cao et al., 2018) and 4SAIL (Verhoef et al., 2007). These models have common input parameters, which are the soil and leaf emissivity, the observation zenith angles and the leaf area index (LAI). The RTMs were validated against in-situ measurements and applied to satellite data. Moreover, they were used to obtain the LST applying a split-window (SW) algorithm, and the retrieved LST was evaluated with in-situ data. The main objectives of this thesis are: - To evaluate the RTMs performance over canopy with in-situ measurements, - evaluate the angular variation of the canopy emissivity from the RTMs and in-situ measured data, - generate directional emissivity maps using the RTMs for moderate resolution data (e.g., 500 m and 1 km), - compare the directional emissivity maps with the MODIS MYD21 emissivity product, which is obtained with the TES method, - and evaluate the RTMs emissivity effect when applying them to retrieve the LST from satellite data. Methodology The FR97 and Mod3 models are based on the RTM proposed by Prevot (1985) which takes into account the soil and leaves contributions to the canopy emissivity. The main difference between these models lies in the fact that the Mod3 models does not take into account the multiple reflections that takes place among the vegetated components (i.e. the different leaves inside the canopy), considering just the interaction between the soil and the leaves. For that, the cavity effect coefficient is not used in the Mod3 model, while it is part of the leaves contribution in the FR97 model. The Rmod3 model was presented as a modified version of the Mod3 model for satellite mixed pixels. This model introduced the vegetation fraction (Pv) as an input parameter modifying the Mod3 model, and added an additional term relating the bare soil emissivity with the bare soil fraction (1 – Pv). The 4SAIL model is an extension to the TIR of the four components scattering by arbitrarily inclined leaves (SAIL) model. The model is expressed in four differential equations which describe the interaction among four fluxes (two direct and two diffuse fluxes). A free distributed program code to solve these equations analytically was used in this study. The REN15 model follows the theory of the FR97 model, but it uses the 4SAIL model to estimate the cavity effect coefficient instead of the given coefficients for the FR97 model. Due to this modification, REN15 obtains closer values to the 4SAIL model than the FR97. The CE-P model is based on the recollision probability parameter instead of the cavity effect coefficient to consider the multiple reflections inside the canopy. This parameter is defined as the probability of a photon to interact with a canopy component after an interaction with another component. The recollision parameter was originally used in the visible and near infrared spectral range, and it is extended in this model to the TIR spectrum. A sensibility analysis of the RTMs was done to estimate each model uncertainty and the contribution of each parameter to the uncertainty. For that, typical soil and leaves emissivities were used, i.e. 0.94 and 0.98, respectively. It was estimated for observation zenith angles ranging from 0o to 60o in steps of 10o, and for LAI values ranging from 0.5 to 3.0 m2/m2 in steps of 0.5 m2/m2. Uncertainties of ±0.01 were assigned to each input emissivity, ±0.5o to the input observation zenith angle and ±23 % to the LAI uncertainty. An emissivity uncertainty between ±0.003 and ±0.010 was observed for most models, depending on the LAI and observation zenith angle. The highest contribution to the models uncertainty was the input emissivities, showing the soil emissivity the highest contribution when LAI 1 m2/m2. The contribution of the LAI uncertainty to the model uncertainty was also relevant for LAIs 1.5 m2/m2 the Mod3 model showed a better agreement with the TES emissivity, but for LAI 0.984). However, the RTMs emissivity values (between 0.97 and 0.98) were found more realistic according to the surface cover. These results showed that the RTMs provided good results in the estimation of the emissivity required for the LST retrieval from satellite thermal sensors, e. g. MODIS, since the results were similar or even better to those given by the currently operational procedures. The extension of the RTMs to other satellite sensors are shown to be interesting, as it would allow to estimate the canopy emissivity considering possible variations in the canopy in terms of LAI.
| year | journal | country | edition | language |
|---|---|---|---|---|
| 2020-01-01 |